Journal metrics

Journal metrics

  • h5-index value: 10 h5-index 10
Adv. Sci. Res., 14, 323-334, 2017
https://doi.org/10.5194/asr-14-323-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
19 Dec 2017
Modelling Glaciers in the HARMONIE-AROME NWP model
Ruth Mottram1, Kristian Pagh Nielsen1, Emily Gleeson2, and Xiaohua Yang1 1Research and Development, Danish Meteorological Institute, Copenhagen, 2200, Denmark
2Research, Environment and Applications Division, Met Éireann, Dublin, Ireland
Abstract. HARMONIE-AROME is a convection-permitting non-hydrostatic model that includes the multi-purpose SURFEX surface model. It is developed for high resolution (1–3 km) weather forecasting and applied in a number of regions in Europe and the Mediterranean. A version of HARMONIE-AROME is also under development for regional climate modelling. Here we run HARMONIE-AROME for a domain over Greenland that includes a significant portion of the Greenland ice sheet. The model output reproduces temperature, wind speed and direction and relative humidity over the ice sheet well when compared with the observations from PROMICE automatic weather stations (AWS) operated within the model domain on the ice sheet (mean temperature bias 1.31 ± 3.6 K) but we identified a much lower bias (−0.16 ± 2.3 K) at PROMICE sites on days where melt does not occur at the ice sheet surface and is thus an artefact of the simplified surface scheme over glaciers in the existing HARMONIE-AROME operational set-up. The bias in summer time temperature also affects wind speed and direction as the dominant katabatic winds are caused by the cold ice surface and slope gradient. By setting an upper threshold to the surface temperature of the ice surface within SURFEX we show that the weather forecast error over the Greenland ice sheet can be reduced in summer when glacier ice is exposed. This improvement will facilitate accurate ice melt and run-off computations, important both for ice surface mass budget estimation and for commercial applications such as hydro-power forecasting. Furthermore, the HCLIM regional climate model derived from HARMONIE-AROME will need to accurately account for glacier surface processes in these regions in order to be used to accurately compute the surface mass budget of ice sheets and glaciers, a key goal of regional climate modelling studies in Greenland.

Citation: Mottram, R., Nielsen, K. P., Gleeson, E., and Yang, X.: Modelling Glaciers in the HARMONIE-AROME NWP model, Adv. Sci. Res., 14, 323-334, https://doi.org/10.5194/asr-14-323-2017, 2017.
Publications Copernicus
Download
Short summary
The HARMONIE weather forecasting model is used successfully in Greenland, but there are some problems over the ice sheet due to the lack of realistic glacier surface characteristics. By introducing a correction to the model, preventing glacier surface temperatures over 0 °C, we improve both 2 m air temperature and the surface winds (both strength and direction) forecast by the model. We also identify other corrections needed before HARMONIE can be used for climate and ice sheet modelling.
The HARMONIE weather forecasting model is used successfully in Greenland, but there are some...
Share