Journal cover Journal topic
Advances in Science and Research The open-access proceedings of the European Meteorological Society (EMS)

Journal metrics

  • h5-index value: 12 h5-index 12
Adv. Sci. Res., 13, 21-26, 2016
https://doi.org/10.5194/asr-13-21-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
02 Mar 2016
Validation of the McClear clear-sky model in desert conditions with three stations in Israel
Mireille Lefèvre and Lucien Wald MINES ParisTech – PSL Research University, Sophia Antipolis, Paris, France
Abstract. The new McClear clear-sky model, a fast model based on a radiative transfer solver, exploits the atmospheric properties provided by the EU-funded Copernicus Atmosphere Monitoring Service (CAMS) to estimate the solar direct and global irradiances received at ground level in cloud-free conditions at any place any time. The work presented here focuses on desert conditions and compares the McClear irradiances to coincident 1 min measurements made in clear-sky conditions at three stations in Israel which are distant from less than 100 km. The bias for global irradiance is comprised between 2 and 32 W m−2, i.e. between 0 and 4 % of the mean observed irradiance (approximately 830 W m−2). The RMSE ranges from 30 to 41 W m−2 (4 %) and the squared correlation coefficient is greater than 0.976. The bias for the direct irradiance at normal incidence (DNI) is comprised between −68 and +13 W m−2, i.e. between −8 and 2 % of the mean observed DNI (approximately 840 W m−2). The RMSE ranges from 53 (7 %) to 83 W m−2 (10 %). The squared correlation coefficient is close to 0.6. The performances are similar for the three sites for the global irradiance and for the DNI to a lesser extent, demonstrating the robustness of the McClear model combined with CAMS products. These results are discussed in the light of those obtained by McClear for other desert areas in Egypt and United Arab Emirates.

Citation: Lefèvre, M. and Wald, L.: Validation of the McClear clear-sky model in desert conditions with three stations in Israel, Adv. Sci. Res., 13, 21-26, https://doi.org/10.5194/asr-13-21-2016, 2016.
Publications Copernicus
Download
Short summary
The new CAMS (Copernicus Atmosphere Monitoring Service) McClear service is a practical easy-to-use tool to estimate the solar direct and global irradiances received at ground level in cloud-free conditions at any place any time. This article presents validation against 1 min measurements made at three very close stations in Israel in desert conditions. The good results demonstrate the accuracy of McClear and its ability to capture the temporal and spatial variability of the irradiance field.
The new CAMS (Copernicus Atmosphere Monitoring Service) McClear service is a practical...
Share